-
Notifications
You must be signed in to change notification settings - Fork 313
/
Copy pathdtmf.c
411 lines (334 loc) · 11.1 KB
/
dtmf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//
// This file is part of Dire Wolf, an amateur radio packet TNC.
//
// Copyright (C) 2013 John Langner, WB2OSZ
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
/*------------------------------------------------------------------
*
* Module: dtmf.c
*
* Purpose: Decoder for DTMF, commonly known as "touch tones."
*
* Description: This uses the Goertzel Algorithm for tone detection.
*
* References: http://eetimes.com/design/embedded/4024443/The-Goertzel-Algorithm
* http://www.ti.com/ww/cn/uprogram/share/ppt/c5000/17dtmf_v13.ppt
*
*---------------------------------------------------------------*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include "direwolf.h"
#include "dtmf.h"
// Define for unit test.
//#define DTMF_TEST 1
#if DTMF_TEST
#define TIMEOUT_SEC 1 /* short for unit test below. */
#define DEBUG 1
#else
#define TIMEOUT_SEC 5 /* for normal operation. */
#endif
#define NUM_TONES 8
static int const dtmf_tones[NUM_TONES] = { 697, 770, 852, 941, 1209, 1336, 1477, 1633 };
/*
* Current state of the decoding.
*/
static struct {
int sample_rate; /* Samples per sec. Typ. 44100, 8000, etc. */
int block_size; /* Number of samples to process in one block. */
float coef[NUM_TONES];
struct { /* Separate for each audio channel. */
int n; /* Samples processed in this block. */
float Q1[NUM_TONES];
float Q2[NUM_TONES];
char prev_dec;
char debounced;
char prev_debounced;
int timeout;
} C[MAX_CHANS];
} D;
/*------------------------------------------------------------------
*
* Name: dtmf_init
*
* Purpose: Initialize the DTMF decoder.
* This should be called once at application start up time.
*
* Inputs: sample_rate - Audio sample frequency, typically
* 44100, 22050, 8000, etc.
*
* Returns: None.
*
*----------------------------------------------------------------*/
void dtmf_init (int sample_rate)
{
int j; /* Loop over all tones frequencies. */
int c; /* Loop over all audio channels. */
/*
* Processing block size.
* Larger = narrower bandwidth, slower response.
*/
D.sample_rate = sample_rate;
D.block_size = (205 * sample_rate) / 8000;
#if DEBUG
dw_printf (" freq k coef \n");
#endif
for (j=0; j<NUM_TONES; j++) {
float k;
// Why do some insist on rounding k to the nearest integer?
// That would move the filter center frequency away from ideal.
// What is to be gained?
// More consistent results for all the tones when k is not rounded off.
k = D.block_size * (float)(dtmf_tones[j]) / (float)(D.sample_rate);
D.coef[j] = 2 * cos(2 * M_PI * (float)k / (float)(D.block_size));
assert (D.coef[j] > 0 && D.coef[j] < 2.0);
#if DEBUG
dw_printf ("%8d %5.1f %8.5f \n", dtmf_tones[j], k, D.coef[j]);
#endif
}
for (c=0; c<MAX_CHANS; c++) {
D.C[c].n = 0;
for (j=0; j<NUM_TONES; j++) {
D.C[c].Q1[j] = 0;
D.C[c].Q2[j] = 0;
}
D.C[c].prev_dec = ' ';
D.C[c].debounced = ' ';
D.C[c].prev_debounced = ' ';
D.C[c].timeout = 0;
}
}
/*------------------------------------------------------------------
*
* Name: dtmf_sample
*
* Purpose: Process one audio sample from the sound input source.
*
* Inputs: c - Audio channel number.
* This can process multiple channels in parallel.
* input - Audio sample.
*
* Returns: 0123456789ABCD*# for a button push.
* . for nothing happening during sample interval.
* $ after several seconds of inactivity.
* space between sample intervals.
*
*
*----------------------------------------------------------------*/
__attribute__((hot))
char dtmf_sample (int c, float input)
{
int i;
float Q0;
float output[NUM_TONES];
char decoded;
char ret;
static const char rc2char[16] = { '1', '2', '3', 'A',
'4', '5', '6', 'B',
'7', '8', '9', 'C',
'*', '0', '#', 'D' };
for (i=0; i<NUM_TONES; i++) {
Q0 = input + D.C[c].Q1[i] * D.coef[i] - D.C[c].Q2[i];
D.C[c].Q2[i] = D.C[c].Q1[i];
D.C[c].Q1[i] = Q0;
}
/*
* Is it time to process the block?
*/
D.C[c].n++;
if (D.C[c].n == D.block_size) {
int row, col;
for (i=0; i<NUM_TONES; i++) {
output[i] = sqrt(D.C[c].Q1[i] * D.C[c].Q1[i] + D.C[c].Q2[i] * D.C[c].Q2[i] - D.C[c].Q1[i] * D.C[c].Q2[i] * D.coef[i]);
D.C[c].Q1[i] = 0;
D.C[c].Q2[i] = 0;
}
D.C[c].n = 0;
/*
* The input signal can vary over a couple orders of
* magnitude so we can't set some absolute threshold.
*
* See if one tone is stronger than the sum of the
* others in the same group multiplied by some factor.
*
* For perfect synthetic signals this needs to be in
* the range of about 1.33 (very senstive) to 2.15 (very fussy).
*
* Too low will cause false triggers on random noise.
* Too high will won't decode less than perfect signals.
*
* Use the mid point 1.74 as our initial guess.
* It might need some fine tuning for imperfect real world signals.
*/
#define THRESHOLD 1.74
if (output[0] > THRESHOLD * ( output[1] + output[2] + output[3])) row = 0;
else if (output[1] > THRESHOLD * (output[0] + output[2] + output[3])) row = 1;
else if (output[2] > THRESHOLD * (output[0] + output[1] + output[3])) row = 2;
else if (output[3] > THRESHOLD * (output[0] + output[1] + output[2] )) row = 3;
else row = -1;
if (output[4] > THRESHOLD * ( output[5] + output[6] + output[7])) col = 0;
else if (output[5] > THRESHOLD * (output[4] + output[6] + output[7])) col = 1;
else if (output[6] > THRESHOLD * (output[4] + output[5] + output[7])) col = 2;
else if (output[7] > THRESHOLD * (output[4] + output[5] + output[6] )) col = 3;
else col = -1;
for (i=0; i<NUM_TONES; i++) {
#if DEBUG
dw_printf ("%5.0f ", output[i]);
#endif
}
if (row >= 0 && col >= 0) {
decoded = rc2char[row*4+col];
}
else {
decoded = '.';
}
// Consider valid only if we get same twice in a row.
if (decoded == D.C[c].prev_dec) {
D.C[c].debounced = decoded;
/* Reset timeout timer. */
if (decoded != ' ') {
D.C[c].timeout = ((TIMEOUT_SEC) * D.sample_rate) / D.block_size;
}
}
D.C[c].prev_dec = decoded;
// Return only new button pushes.
// Also report timeout after period of inactivity.
ret = '.';
if (D.C[c].debounced != D.C[c].prev_debounced) {
if (D.C[c].debounced != ' ') {
ret = D.C[c].debounced;
}
}
if (ret == '.') {
if (D.C[c].timeout > 0) {
D.C[c].timeout--;
if (D.C[c].timeout == 0) {
ret = '$';
}
}
}
D.C[c].prev_debounced = D.C[c].debounced;
#if DEBUG
dw_printf (" dec=%c, deb=%c, ret=%c \n",
decoded, D.C[c].debounced, ret);
#endif
return (ret);
}
return (' ');
}
/*------------------------------------------------------------------
*
* Name: main
*
* Purpose: Unit test for functions above.
*
*----------------------------------------------------------------*/
#if DTMF_TEST
push_button (char button, int ms)
{
static float phasea = 0;
static float phaseb = 0;
float fa, fb;
int i;
float input;
char x;
static char result[100];
static int result_len = 0;
switch (button) {
case '1': fa = dtmf_tones[0]; fb = dtmf_tones[4]; break;
case '2': fa = dtmf_tones[0]; fb = dtmf_tones[5]; break;
case '3': fa = dtmf_tones[0]; fb = dtmf_tones[6]; break;
case 'A': fa = dtmf_tones[0]; fb = dtmf_tones[7]; break;
case '4': fa = dtmf_tones[1]; fb = dtmf_tones[4]; break;
case '5': fa = dtmf_tones[1]; fb = dtmf_tones[5]; break;
case '6': fa = dtmf_tones[1]; fb = dtmf_tones[6]; break;
case 'B': fa = dtmf_tones[1]; fb = dtmf_tones[7]; break;
case '7': fa = dtmf_tones[2]; fb = dtmf_tones[4]; break;
case '8': fa = dtmf_tones[2]; fb = dtmf_tones[5]; break;
case '9': fa = dtmf_tones[2]; fb = dtmf_tones[6]; break;
case 'C': fa = dtmf_tones[2]; fb = dtmf_tones[7]; break;
case '*': fa = dtmf_tones[3]; fb = dtmf_tones[4]; break;
case '0': fa = dtmf_tones[3]; fb = dtmf_tones[5]; break;
case '#': fa = dtmf_tones[3]; fb = dtmf_tones[6]; break;
case 'D': fa = dtmf_tones[3]; fb = dtmf_tones[7]; break;
case '?':
if (strcmp(result, "123A456B789C*0#D123$789$") == 0) {
dw_printf ("\nSuccess!\n");
}
else {
dw_printf ("\n *** TEST FAILED ***\n");
dw_printf ("\"%s\"\n", result);
}
break;
default: fa = 0; fb = 0;
}
for (i = 0; i < (ms*D.sample_rate)/1000; i++) {
input = sin(phasea) + sin(phaseb);
phasea += 2 * M_PI * fa / D.sample_rate;
phaseb += 2 * M_PI * fb / D.sample_rate;
/* Make sure it is insensitive to signal amplitude. */
x = dtmf_sample (0, input);
//x = dtmf_sample (0, input * 1000);
//x = dtmf_sample (0, input * 0.001);
if (x != ' ' && x != '.') {
result[result_len] = x;
result_len++;
result[result_len] = '\0';
}
}
}
main ()
{
dtmf_init(44100);
dw_printf ("\nFirst, check all button tone pairs. \n\n");
/* Max auto dialing rate is 10 per second. */
push_button ('1', 50); push_button (' ', 50);
push_button ('2', 50); push_button (' ', 50);
push_button ('3', 50); push_button (' ', 50);
push_button ('A', 50); push_button (' ', 50);
push_button ('4', 50); push_button (' ', 50);
push_button ('5', 50); push_button (' ', 50);
push_button ('6', 50); push_button (' ', 50);
push_button ('B', 50); push_button (' ', 50);
push_button ('7', 50); push_button (' ', 50);
push_button ('8', 50); push_button (' ', 50);
push_button ('9', 50); push_button (' ', 50);
push_button ('C', 50); push_button (' ', 50);
push_button ('*', 50); push_button (' ', 50);
push_button ('0', 50); push_button (' ', 50);
push_button ('#', 50); push_button (' ', 50);
push_button ('D', 50); push_button (' ', 50);
dw_printf ("\nShould reject very short pulses.\n\n");
push_button ('1', 20); push_button (' ', 50);
push_button ('1', 20); push_button (' ', 50);
push_button ('1', 20); push_button (' ', 50);
push_button ('1', 20); push_button (' ', 50);
push_button ('1', 20); push_button (' ', 50);
dw_printf ("\nTest timeout after inactivity.\n\n");
/* For this test we use 1 second. */
/* In practice, it will probably more like 10 or 20. */
push_button ('1', 250); push_button (' ', 500);
push_button ('2', 250); push_button (' ', 500);
push_button ('3', 250); push_button (' ', 1200);
push_button ('7', 250); push_button (' ', 500);
push_button ('8', 250); push_button (' ', 500);
push_button ('9', 250); push_button (' ', 1200);
/* Check for expected results. */
push_button ('?', 0);
} /* end main */
#endif
/* end dtmf.c */