-
Notifications
You must be signed in to change notification settings - Fork 313
/
Copy pathSwissGrid.cpp
140 lines (99 loc) · 4.57 KB
/
SwissGrid.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#include <math.h>
#include "constants.h"
#include "LatLong- UTM conversion.h"
//forward declarations
double CorrRatio(double LatRad, const double C);
double NewtonRaphson(const double initEstimate);
void LLtoSwissGrid(const double Lat, const double Long,
double &SwissNorthing, double &SwissEasting)
{
//converts lat/long to Swiss Grid coords. Equations from "Supplementary PROJ.4 Notes-
//Swiss Oblique Mercator Projection", August 5, 1995, Release 4.3.3, by Gerald I. Evenden
//Lat and Long are in decimal degrees
//This transformation is, of course, only valid in Switzerland
//Written by Chuck Gantz- chuck.gantz@globalstar.com
double a = ellipsoid[3].EquatorialRadius; //Bessel ellipsoid
double eccSquared = ellipsoid[3].eccentricitySquared;
double ecc = sqrt(eccSquared);
double LongOrigin = 7.43958333; //E7d26'22.500"
double LatOrigin = 46.95240556; //N46d57'8.660"
double LatRad = Lat*deg2rad;
double LongRad = Long*deg2rad;
double LatOriginRad = LatOrigin*deg2rad;
double LongOriginRad = LongOrigin*deg2rad;
double c = sqrt(1+((eccSquared * pow(cos(LatOriginRad), 4)) / (1-eccSquared)));
double equivLatOrgRadPrime = asin(sin(LatOriginRad) / c);
//eqn. 1
double K = log(tan(FOURTHPI + equivLatOrgRadPrime/2))
-c*(log(tan(FOURTHPI + LatOriginRad/2))
- ecc/2 * log((1+ecc*sin(LatOriginRad)) / (1-ecc*sin(LatOriginRad))));
double LongRadPrime = c*(LongRad - LongOriginRad); //eqn 2
double w = c*(log(tan(FOURTHPI + LatRad/2))
- ecc/2 * log((1+ecc*sin(LatRad)) / (1-ecc*sin(LatRad)))) + K; //eqn 1
double LatRadPrime = 2 * (atan(exp(w)) - FOURTHPI); //eqn 1
//eqn 3
double sinLatDoublePrime = cos(equivLatOrgRadPrime) * sin(LatRadPrime)
- sin(equivLatOrgRadPrime) * cos(LatRadPrime) * cos(LongRadPrime);
double LatRadDoublePrime = asin(sinLatDoublePrime);
//eqn 4
double sinLongDoublePrime = cos(LatRadPrime)*sin(LongRadPrime) / cos(LatRadDoublePrime);
double LongRadDoublePrime = asin(sinLongDoublePrime);
double R = a*sqrt(1-eccSquared) / (1-eccSquared*sin(LatOriginRad) * sin(LatOriginRad));
SwissNorthing = R*log(tan(FOURTHPI + LatRadDoublePrime/2)) + 200000.0; //eqn 5
SwissEasting = R*LongRadDoublePrime + 600000.0; //eqn 6
}
void SwissGridtoLL(const double SwissNorthing, const double SwissEasting,
double& Lat, double& Long)
{
double a = ellipsoid[3].EquatorialRadius; //Bessel ellipsoid
double eccSquared = ellipsoid[3].eccentricitySquared;
double ecc = sqrt(eccSquared);
double LongOrigin = 7.43958333; //E7d26'22.500"
double LatOrigin = 46.95240556; //N46d57'8.660"
double LatOriginRad = LatOrigin*deg2rad;
double LongOriginRad = LongOrigin*deg2rad;
double R = a*sqrt(1-eccSquared) / (1-eccSquared*sin(LatOriginRad) * sin(LatOriginRad));
double LatRadDoublePrime = 2*(atan(exp((SwissNorthing - 200000.0)/R)) - FOURTHPI); //eqn. 7
double LongRadDoublePrime = (SwissEasting - 600000.0)/R; //eqn. 8 with equation corrected
double c = sqrt(1+((eccSquared * pow(cos(LatOriginRad), 4)) / (1-eccSquared)));
double equivLatOrgRadPrime = asin(sin(LatOriginRad) / c);
double sinLatRadPrime = cos(equivLatOrgRadPrime)*sin(LatRadDoublePrime)
+ sin(equivLatOrgRadPrime)*cos(LatRadDoublePrime)*cos(LongRadDoublePrime);
double LatRadPrime = asin(sinLatRadPrime);
double sinLongRadPrime = cos(LatRadDoublePrime)*sin(LongRadDoublePrime)/cos(LatRadPrime);
double LongRadPrime = asin(sinLongRadPrime);
Long = (LongRadPrime/c + LongOriginRad) * rad2deg;
Lat = NewtonRaphson(LatRadPrime) * rad2deg;
}
double NewtonRaphson(const double initEstimate)
{
double Estimate = initEstimate;
double tol = 0.00001;
double corr;
double eccSquared = ellipsoid[3].eccentricitySquared;
double ecc = sqrt(eccSquared);
double LatOrigin = 46.95240556; //N46d57'8.660"
double LatOriginRad = LatOrigin*deg2rad;
double c = sqrt(1+((eccSquared * pow(cos(LatOriginRad), 4)) / (1-eccSquared)));
double equivLatOrgRadPrime = asin(sin(LatOriginRad) / c);
//eqn. 1
double K = log(tan(FOURTHPI + equivLatOrgRadPrime/2))
-c*(log(tan(FOURTHPI + LatOriginRad/2))
- ecc/2 * log((1+ecc*sin(LatOriginRad)) / (1-ecc*sin(LatOriginRad))));
double C = (K - log(tan(FOURTHPI + initEstimate/2)))/c;
do
{
corr = CorrRatio(Estimate, C);
Estimate = Estimate - corr;
}
while (fabs(corr) > tol);
return Estimate;
}
double CorrRatio(double LatRad, const double C)
{
double eccSquared = ellipsoid[3].eccentricitySquared;
double ecc = sqrt(eccSquared);
double corr = (C + log(tan(FOURTHPI + LatRad/2))
- ecc/2 * log((1+ecc*sin(LatRad)) / (1-ecc*sin(LatRad)))) * (((1-eccSquared*sin(LatRad)*sin(LatRad)) * cos(LatRad)) / (1-eccSquared));
return corr;
}