-
Notifications
You must be signed in to change notification settings - Fork 313
/
Copy pathdemod_afsk.c
944 lines (753 loc) · 31.7 KB
/
demod_afsk.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
//
// This file is part of Dire Wolf, an amateur radio packet TNC.
//
// Copyright (C) 2011, 2012, 2013, 2014, 2015, 2020 John Langner, WB2OSZ
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// #define DEBUG1 1 /* display debugging info */
// #define DEBUG3 1 /* print carrier detect changes. */
// #define DEBUG4 1 /* capture AFSK demodulator output to log files */
/* Can be used to make nice plots. */
// #define DEBUG5 1 // Write just demodulated bit stream to file. */
/*------------------------------------------------------------------
*
* Module: demod_afsk.c
*
* Purpose: Demodulator for Audio Frequency Shift Keying (AFSK).
*
* Input: Audio samples from either a file or the "sound card."
*
* Outputs: Calls hdlc_rec_bit() for each bit demodulated.
*
*---------------------------------------------------------------*/
#include "direwolf.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <unistd.h>
#include <sys/stat.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include "audio.h"
#include "tune.h"
#include "fsk_demod_state.h"
#include "fsk_gen_filter.h"
#include "hdlc_rec.h"
#include "textcolor.h"
#include "demod_afsk.h"
#include "dsp.h"
#define MIN(a,b) ((a)<(b)?(a):(b))
#define MAX(a,b) ((a)>(b)?(a):(b))
#define TUNE(envvar,param,name,fmt) { \
char *e = getenv(envvar); \
if (e != NULL) { \
param = atof(e); \
text_color_set (DW_COLOR_ERROR); \
dw_printf ("TUNE: " name " = " fmt "\n", param); \
} }
// Cosine table indexed by unsigned byte.
static float fcos256_table[256];
#define fcos256(x) (fcos256_table[((x)>>24)&0xff])
#define fsin256(x) (fcos256_table[(((x)>>24)-64)&0xff])
static void nudge_pll (int chan, int subchan, int slice, float demod_out, struct demodulator_state_s *D, float amplitude);
/* Quick approximation to sqrt(x*x + y*y) */
/* No benefit for regular PC. */
/* Might help with microcomputer platform??? */
__attribute__((hot)) __attribute__((always_inline))
static inline float fast_hypot(float x, float y)
{
#if 0
x = fabsf(x);
y = fabsf(y);
if (x > y) {
return (x * .941246f + y * .41f);
}
else {
return (y * .941246f + x * .41f);
}
#else
return (hypotf(x,y));
#endif
}
/* Add sample to buffer and shift the rest down. */
__attribute__((hot)) __attribute__((always_inline))
static inline void push_sample (float val, float *buff, int size)
{
memmove(buff+1,buff,(size-1)*sizeof(float));
buff[0] = val;
}
/* FIR filter kernel. */
__attribute__((hot)) __attribute__((always_inline))
static inline float convolve (const float *__restrict__ data, const float *__restrict__ filter, int filter_taps)
{
float sum = 0.0f;
int j;
//#pragma GCC ivdep // ignored until gcc 4.9
for (j=0; j<filter_taps; j++) {
sum += filter[j] * data[j];
}
return (sum);
}
// Automatic Gain control - used when we have a single slicer.
//
// The first step is to create an envelope for the peak and valley
// of the mark or space amplitude. We need to keep track of the valley
// because it does not go down to zero when the tone is not present.
// We want to find the difference between tone present and not.
//
// We use an IIR filter with fast attack and slow decay which only considers the past.
// Perhaps an improvement could be obtained by looking in the future as well.
//
// Result should settle down to 1 unit peak to peak. i.e. -0.5 to +0.5
__attribute__((hot)) __attribute__((always_inline))
static inline float agc (float in, float fast_attack, float slow_decay, float *ppeak, float *pvalley)
{
if (in >= *ppeak) {
*ppeak = in * fast_attack + *ppeak * (1.0f - fast_attack);
}
else {
*ppeak = in * slow_decay + *ppeak * (1.0f - slow_decay);
}
if (in <= *pvalley) {
*pvalley = in * fast_attack + *pvalley * (1.0f - fast_attack);
}
else {
*pvalley = in * slow_decay + *pvalley * (1.0f - slow_decay);
}
#if 1
float x = in;
if (x > *ppeak) x = *ppeak; // experiment: clip to envelope?
if (x < *pvalley) x = *pvalley;
#endif
if (*ppeak > *pvalley) {
return ((x - 0.5f * (*ppeak + *pvalley)) / (*ppeak - *pvalley)); // my original AGC
//return (( x - 0.5f * (*ppeak + *pvalley )) * ( *ppeak - *pvalley )); // see note below.
//return (x - 0.5f * (*ppeak + *pvalley)); // not as good either.
}
return (0.0f);
}
// K6JQ pointed me to this wonderful article:
// Improved Automatic Threshold Correction Methods for FSK by Kok Chen, W7AY.
// http://www.w7ay.net/site/Technical/ATC/index.html
//
// The stated problem is a little different, selective fading for HF RTTY, but the
// general idea is the similar: Compensating for imbalance of the two tones.
//
// The stronger tone probably has a better S/N ratio so we apply a larger
// weight to it. Effectively it is comparing power rather than amplitude.
// This is the optimal method from the article referenced.
//
// Interesting idea but it did not work as well as the original AGC in this case.
// For VHF FM we are not dealing with rapid deep selective fading of one tone.
// Instead we have an imbalance which is the same for the whole frame.
// It might be interesting to try this with HF SSB packet which is much like RTTY.
//
// I use the term valley rather than noise floor.
// After a little algebra, it looks remarkably similar to the function above.
//
// return (( x - valley ) * ( peak - valley ) - 0.5f * ( peak - valley ) * ( peak - valley ));
// return (( x - valley ) - 0.5f * ( peak - valley )) * ( peak - valley ));
// return (( x - 0.5f * (peak + valley )) * ( peak - valley ));
/*
* for multi-slicer experiment.
*/
#define MIN_G 0.5f
#define MAX_G 4.0f
/* TODO: static */ float space_gain[MAX_SUBCHANS];
/*------------------------------------------------------------------
*
* Name: demod_afsk_init
*
* Purpose: Initialization for an AFSK demodulator.
* Select appropriate parameters and set up filters.
*
* Inputs: samples_per_sec
* baud
* mark_freq
* space_freq
*
* D - Pointer to demodulator state for given channel.
*
* Outputs:
*
* Returns: None.
*
* Bugs: This doesn't do much error checking so don't give it
* anything crazy.
*
*----------------------------------------------------------------*/
void demod_afsk_init (int samples_per_sec, int baud, int mark_freq,
int space_freq, char profile, struct demodulator_state_s *D)
{
int j;
for (j = 0; j < 256; j++) {
fcos256_table[j] = cosf((float)j * 2.0f * (float)M_PI / 256.0f);
}
memset (D, 0, sizeof(struct demodulator_state_s));
D->num_slicers = 1;
#if DEBUG1
dw_printf ("demod_afsk_init (rate=%d, baud=%d, mark=%d, space=%d, profile=%c\n",
samples_per_sec, baud, mark_freq, space_freq, profile);
#endif
D->profile = profile;
switch (D->profile) {
case 'A': // Official name
case 'E': // For compatibility during transition
D->profile = 'A';
/* New in version 1.7 */
/* This is a simpler version of what has been used all along. */
/* Rather than convolving each sample with a pre-computed mark and */
/* space filter, we have two free running local oscillators. */
/* Also see if we can do better with a Root Raised Cosine filter */
/* which supposedly reduces intersymbol interference. */
D->use_prefilter = 1; /* first, a bandpass filter. */
if (baud > 600) {
D->prefilter_baud = 0.155;
// Low cutoff below mark, high cutoff above space
// as fraction of the symbol rate.
// Intuitively you might expect this to be about
// half the symbol rate, e.g. 600 Hz outside
// the two tones of interest for 1200 baud.
// It turns out that narrower is better.
D->pre_filter_len_sym = 383 * 1200. / 44100.; // about 8 symbols
D->pre_window = BP_WINDOW_TRUNCATED;
}
else {
D->prefilter_baud = 0.87; // TOTO: fine tune
D->pre_filter_len_sym = 1.857;
D->pre_window = BP_WINDOW_COSINE;
}
// Local oscillators for Mark and Space tones.
D->u.afsk.m_osc_phase = 0;
D->u.afsk.m_osc_delta = round ( pow(2., 32.) * (double)mark_freq / (double)samples_per_sec );
D->u.afsk.s_osc_phase = 0;
D->u.afsk.s_osc_delta = round ( pow(2., 32.) * (double)space_freq / (double)samples_per_sec );
D->u.afsk.use_rrc = 1;
TUNE("TUNE_USE_RRC", D->u.afsk.use_rrc, "use_rrc", "%d")
if (D->u.afsk.use_rrc) {
D->u.afsk.rrc_width_sym = 2.80;
D->u.afsk.rrc_rolloff = 0.20;
}
else {
D->lpf_baud = 0.14;
D->lp_filter_width_sym = 1.388;
D->lp_window = BP_WINDOW_TRUNCATED;
}
D->agc_fast_attack = 0.70;
D->agc_slow_decay = 0.000090;
D->pll_locked_inertia = 0.74;
D->pll_searching_inertia = 0.50;
break;
case 'B': // official name
case 'D': // backward compatibility
D->profile = 'B';
// Experiment for version 1.7.
// Up to this point, I've always used separate mark and space
// filters and compared the amplitudes.
// Another technique for an FM demodulator is to mix with
// the center frequency and look for the rate of change of the phase.
D->use_prefilter = 1; /* first, a bandpass filter. */
if (baud > 600) {
D->prefilter_baud = 0.19;
// Low cutoff below mark, high cutoff above space
// as fraction of the symbol rate.
// Intuitively you might expect this to be about
// half the symbol rate, e.g. 600 Hz outside
// the two tones of interest for 1200 baud.
// It turns out that narrower is better.
D->pre_filter_len_sym = 8.163; // Filter length in symbol times.
D->pre_window = BP_WINDOW_TRUNCATED;
}
else {
D->prefilter_baud = 0.87; // TOTO: fine tune
D->pre_filter_len_sym = 1.857;
D->pre_window = BP_WINDOW_COSINE;
}
// Local oscillator for Center frequency.
D->u.afsk.c_osc_phase = 0;
D->u.afsk.c_osc_delta = round ( pow(2., 32.) * 0.5 * (mark_freq + space_freq) / (double)samples_per_sec );
D->u.afsk.use_rrc = 1;
TUNE("TUNE_USE_RRC", D->u.afsk.use_rrc, "use_rrc", "%d")
if (D->u.afsk.use_rrc) {
D->u.afsk.rrc_width_sym = 2.00;
D->u.afsk.rrc_rolloff = 0.40;
}
else {
D->lpf_baud = 0.5;
D->lp_filter_width_sym = 1.714286; // 63 * 1200. / 44100.;
D->lp_window = BP_WINDOW_TRUNCATED;
}
// For scaling phase shift into normallized -1 to +1 range for mark and space.
D->u.afsk.normalize_rpsam = 1.0 / (0.5 * abs(mark_freq - space_freq) * 2 * M_PI / samples_per_sec);
// New "B" demodulator does not use AGC but demod.c needs this to derive "quick" and
// "sluggish" values for overall signal amplitude. That probably should be independent
// of these values.
D->agc_fast_attack = 0.70;
D->agc_slow_decay = 0.000090;
D->pll_locked_inertia = 0.74;
D->pll_searching_inertia = 0.50;
D->alevel_mark_peak = -1; // Disable received signal (m/s) display.
D->alevel_space_peak = -1;
break;
default:
text_color_set(DW_COLOR_ERROR);
dw_printf ("Invalid AFSK demodulator profile = %c\n", profile);
exit (1);
}
TUNE("TUNE_PRE_BAUD", D->prefilter_baud, "prefilter_baud", "%.3f")
TUNE("TUNE_PRE_WINDOW", D->pre_window, "pre_window", "%d")
TUNE("TUNE_LPF_BAUD", D->lpf_baud, "lpf_baud", "%.3f")
TUNE("TUNE_LP_WINDOW", D->lp_window, "lp_window", "%d")
TUNE("TUNE_RRC_ROLLOFF", D->u.afsk.rrc_rolloff, "rrc_rolloff", "%.2f")
TUNE("TUNE_RRC_WIDTH_SYM", D->u.afsk.rrc_width_sym, "rrc_width_sym", "%.2f")
TUNE("TUNE_AGC_FAST", D->agc_fast_attack, "agc_fast_attack", "%.3f")
TUNE("TUNE_AGC_SLOW", D->agc_slow_decay, "agc_slow_decay", "%.6f")
TUNE("TUNE_PLL_LOCKED", D->pll_locked_inertia, "pll_locked_inertia", "%.2f")
TUNE("TUNE_PLL_SEARCHING", D->pll_searching_inertia, "pll_searching_inertia", "%.2f")
/*
* Calculate constants used for timing.
* The audio sample rate must be at least a few times the data rate.
*
* Baud is an integer so we hack in a fine adjustment for EAS.
* Probably makes no difference because the DPLL keeps it in sync.
*
* A fraction if a Hz would make no difference for the filters.
*/
if (baud == 521) {
D->pll_step_per_sample = (int) round((TICKS_PER_PLL_CYCLE * (double)520.83) / ((double)samples_per_sec));
}
else {
D->pll_step_per_sample = (int) round((TICKS_PER_PLL_CYCLE * (double)baud) / ((double)samples_per_sec));
}
/*
* Optionally apply a bandpass ("pre") filter to attenuate
* frequencies outside the range of interest.
*/
if (D->use_prefilter) {
// odd number is a little better
D->pre_filter_taps = ((int)( D->pre_filter_len_sym * (float)samples_per_sec / (float)baud )) | 1;
TUNE("TUNE_PRE_FILTER_TAPS", D->pre_filter_taps, "pre_filter_taps", "%d")
// TODO: Size comes out to 417 for 1200 bps with 48000 sample rate.
// The message is upsetting. Can we handle this better?
if (D->pre_filter_taps > MAX_FILTER_SIZE) {
text_color_set (DW_COLOR_ERROR);
dw_printf ("Warning: Calculated pre filter size of %d is too large.\n", D->pre_filter_taps);
dw_printf ("Decrease the audio sample rate or increase the decimation factor.\n");
dw_printf ("You can use -D2 or -D3, on the command line, to down-sample the audio rate\n");
dw_printf ("before demodulating. This greatly decreases the CPU requirements with little\n");
dw_printf ("impact on the decoding performance. This is useful for a slow ARM processor,\n");
dw_printf ("such as with a Raspberry Pi model 1.\n");
D->pre_filter_taps = (MAX_FILTER_SIZE - 1) | 1;
}
float f1 = MIN(mark_freq,space_freq) - D->prefilter_baud * baud;
float f2 = MAX(mark_freq,space_freq) + D->prefilter_baud * baud;
#if 0
text_color_set(DW_COLOR_DEBUG);
dw_printf ("Generating prefilter %.0f to %.0f Hz.\n", f1, f2);
#endif
f1 = f1 / (float)samples_per_sec;
f2 = f2 / (float)samples_per_sec;
gen_bandpass (f1, f2, D->pre_filter, D->pre_filter_taps, D->pre_window);
}
/*
* Now the lowpass filter.
* In version 1.7 a Root Raised Cosine filter is added as an alternative
* to the generic low pass filter.
* In both cases, lp_filter and lp_filter_taps are used but the
* contents will be generated differently. Later code does not care.
*/
if (D->u.afsk.use_rrc) {
assert (D->u.afsk.rrc_width_sym >= 1 && D->u.afsk.rrc_width_sym <= 16);
assert (D->u.afsk.rrc_rolloff >= 0. && D->u.afsk.rrc_rolloff <= 1.);
D->lp_filter_taps = ((int) (D->u.afsk.rrc_width_sym * (float)samples_per_sec / baud)) | 1; // odd works better
TUNE("TUNE_LP_FILTER_TAPS", D->lp_filter_taps, "lp_filter_taps (RRC)", "%d")
if (D->lp_filter_taps > MAX_FILTER_SIZE) {
text_color_set(DW_COLOR_ERROR);
dw_printf ("Calculated RRC low pass filter size of %d is too large.\n", D->lp_filter_taps);
dw_printf ("Decrease the audio sample rate or increase the decimation factor or\n");
dw_printf ("recompile the application with MAX_FILTER_SIZE larger than %d.\n", MAX_FILTER_SIZE);
D->lp_filter_taps = (MAX_FILTER_SIZE - 1) | 1;
}
assert (D->lp_filter_taps > 8 && D->lp_filter_taps <= MAX_FILTER_SIZE);
(void)gen_rrc_lowpass (D->lp_filter, D->lp_filter_taps, D->u.afsk.rrc_rolloff, (float)samples_per_sec / baud);
}
else {
D->lp_filter_taps = (int) round( D->lp_filter_width_sym * (float)samples_per_sec / (float)baud );
TUNE("TUNE_LP_FILTER_TAPS", D->lp_filter_taps, "lp_filter_taps (FIR)", "%d")
if (D->lp_filter_taps > MAX_FILTER_SIZE) {
text_color_set (DW_COLOR_ERROR);
dw_printf ("Calculated FIR low pass filter size of %d is too large.\n", D->lp_filter_taps);
dw_printf ("Decrease the audio sample rate or increase the decimation factor or\n");
dw_printf ("recompile the application with MAX_FILTER_SIZE larger than %d.\n", MAX_FILTER_SIZE);
D->lp_filter_taps = (MAX_FILTER_SIZE - 1) | 1;
}
assert (D->lp_filter_taps > 8 && D->lp_filter_taps <= MAX_FILTER_SIZE);
float fc = baud * D->lpf_baud / (float)samples_per_sec;
gen_lowpass (fc, D->lp_filter, D->lp_filter_taps, D->lp_window);
}
/*
* Starting with version 1.2
* try using multiple slicing points instead of the traditional AGC.
*/
space_gain[0] = MIN_G;
float step = powf(10.0, log10f(MAX_G/MIN_G) / (MAX_SUBCHANS-1));
for (j=1; j<MAX_SUBCHANS; j++) {
space_gain[j] = space_gain[j-1] * step;
}
} /* demod_afsk_init */
/*-------------------------------------------------------------------
*
* Name: demod_afsk_process_sample
*
* Purpose: (1) Demodulate the AFSK signal.
* (2) Recover clock and data.
*
* Inputs: chan - Audio channel. 0 for left, 1 for right.
* subchan - modem of the channel.
* sam - One sample of audio.
* Should be in range of -32768 .. 32767.
*
* Returns: None
*
* Descripion: First demodulate the AFSK signal.
*
* A digital phase locked loop (PLL) recovers the symbol
* clock and picks out data bits at the proper rate.
*
* For each recovered data bit, we call:
*
* hdlc_rec (channel, demodulated_bit);
*
* to decode HDLC frames from the stream of bits.
*
* Future: This could be generalized by passing in the name
* of the function to be called for each bit recovered
* from the demodulator. For now, it's simply hard-coded.
*
* Evolution: The simple version works less well when there is a substantial difference
* in amplitude of the two tones. e.g. When de-emphasis cuts the
* higher tone down to about half the amplitude. We overcome that
* by boosting the space amplitude by varying amounts before slicing.
*
* In version 1.7 an entirely different approach is added, an FM
* discriminator which produces a result proportional to the
* frequency.
*
*--------------------------------------------------------------------*/
/*
* Which tone is stronger?
*
* In an ideal world, simply compare. In my first naive attempt, that
* worked well with perfect signals. In the real world, we don't
* have too many perfect signals.
*
* Here is an excellent explanation:
* http://www.febo.com/packet/layer-one/transmit.html
*
* Under real conditions, we find that the higher tone usually has a
* considerably smaller amplitude due to the passband characteristics
* of the transmitter and receiver. To make matters worse, it
* varies considerably from one station to another.
*
* The two filters also have different amounts of DC bias.
*
* My solution was to apply automatic gain control (AGC) to the mark and space
* levels. This works by looking at the minimum and maximum outputs
* for each filter and scaling the results to be roughly in the -0.5 to +0.5 range.
* Results were excellent after tweaking the attack and decay times.
*
* 4X6IZ took a different approach. See QEX Jul-Aug 2012.
*
* He ran two different demodulators in parallel. One of them boosted the higher
* frequency tone by 6 dB. Any duplicates were removed. This produced similar results.
* He also used a bandpass filter before the mark/space filters.
* I haven't tried this combination yet for 1200 baud.
*
* First, let's take a look at Track 1 of the TNC test CD. Here the receiver
* has a flat response. We find the mark/space strength ratios very from 0.53 to 1.38
* with a median of 0.81. This is in line with expectations because most
* transmitters add pre-emphasis to boost the higher audio frequencies.
* Track 2 should more closely resemble what comes out of the speaker on a typical
* transceiver. Here we see a ratio from 1.73 to 3.81 with a median of 2.48.
*
* This is similar to my observations of local signals, from the speaker.
* The amplitude ratio varies from 1.48 to 3.41 with a median of 2.70.
*/
__attribute__((hot))
void demod_afsk_process_sample (int chan, int subchan, int sam, struct demodulator_state_s *D)
{
#if DEBUG4
static FILE *demod_log_fp = NULL;
static int seq = 0; /* for log file name */
#endif
assert (chan >= 0 && chan < MAX_CHANS);
assert (subchan >= 0 && subchan < MAX_SUBCHANS);
/*
* Filters use last 'filter_taps' samples.
*
* First push the older samples down.
*
* Finally, put the most recent at the beginning.
*
* Future project? Can we do better than shifting each time?
*/
/* Scale to nice number. */
float fsam = (float)sam / 16384.0f;
switch (D->profile) {
case 'E':
default:
case 'A': {
/* ========== New in Version 1.7 ========== */
// Cleaner & simpler than earlier 'A' thru 'E'
if (D->use_prefilter) {
push_sample (fsam, D->raw_cb, D->pre_filter_taps);
fsam = convolve (D->raw_cb, D->pre_filter, D->pre_filter_taps);
}
push_sample (fsam * fcos256(D->u.afsk.m_osc_phase), D->u.afsk.m_I_raw, D->lp_filter_taps);
push_sample (fsam * fsin256(D->u.afsk.m_osc_phase), D->u.afsk.m_Q_raw, D->lp_filter_taps);
D->u.afsk.m_osc_phase += D->u.afsk.m_osc_delta;
push_sample (fsam * fcos256(D->u.afsk.s_osc_phase), D->u.afsk.s_I_raw, D->lp_filter_taps);
push_sample (fsam * fsin256(D->u.afsk.s_osc_phase), D->u.afsk.s_Q_raw, D->lp_filter_taps);
D->u.afsk.s_osc_phase += D->u.afsk.s_osc_delta;
float m_I = convolve (D->u.afsk.m_I_raw, D->lp_filter, D->lp_filter_taps);
float m_Q = convolve (D->u.afsk.m_Q_raw, D->lp_filter, D->lp_filter_taps);
float m_amp = fast_hypot(m_I, m_Q);
float s_I = convolve (D->u.afsk.s_I_raw, D->lp_filter, D->lp_filter_taps);
float s_Q = convolve (D->u.afsk.s_Q_raw, D->lp_filter, D->lp_filter_taps);
float s_amp = fast_hypot(s_I, s_Q);
/*
* Capture the mark and space peak amplitudes for display.
* It uses fast attack and slow decay to get an idea of the
* overall amplitude.
*/
if (m_amp >= D->alevel_mark_peak) {
D->alevel_mark_peak = m_amp * D->quick_attack + D->alevel_mark_peak * (1.0f - D->quick_attack);
}
else {
D->alevel_mark_peak = m_amp * D->sluggish_decay + D->alevel_mark_peak * (1.0f - D->sluggish_decay);
}
if (s_amp >= D->alevel_space_peak) {
D->alevel_space_peak = s_amp * D->quick_attack + D->alevel_space_peak * (1.0f - D->quick_attack);
}
else {
D->alevel_space_peak = s_amp * D->sluggish_decay + D->alevel_space_peak * (1.0f - D->sluggish_decay);
}
if (D->num_slicers <= 1) {
// Which tone is stonger? That's simple with an ideal signal.
// However, we don't see too many ideal signals.
// Due to mismatching pre-emphasis and de-emphasis, the two
// tones will often have greatly different amplitudes so we use
// automatic gain control (AGC) to scale each to the same range
// before comparing.
// This is probably over complicated and could be combined with
// the signal amplitude measurement, above.
// It works so let's move along to other topics.
float m_norm = agc (m_amp, D->agc_fast_attack, D->agc_slow_decay, &(D->m_peak), &(D->m_valley));
float s_norm = agc (s_amp, D->agc_fast_attack, D->agc_slow_decay, &(D->s_peak), &(D->s_valley));
// The normalized values should be around -0.5 to +0.5 so the difference
// should work out to be around -1 to +1.
// This is important because nudge_pll uses the demod_out amplitude to assign
// a quality or confidence score to the symbol.
float demod_out = m_norm - s_norm;
// Tested and it looks good. Range of about -1 to +1.
//printf ("JWL DEBUG demod A with agc = %6.2f\n", demod_out);
nudge_pll (chan, subchan, 0, demod_out, D, 1.0);
}
else {
// Multiple slice case.
// Rather than trying to find the best threshold location, use multiple
// slicer thresholds in parallel.
// The best slicing point will vary from packet to packet but should
// remain about the same for a given packet.
// We are not performing the AGC step here but still want the envelope
// for caluculating the confidence level (or quality) of the sample.
(void) agc (m_amp, D->agc_fast_attack, D->agc_slow_decay, &(D->m_peak), &(D->m_valley));
(void) agc (s_amp, D->agc_fast_attack, D->agc_slow_decay, &(D->s_peak), &(D->s_valley));
for (int slice=0; slice<D->num_slicers; slice++) {
float demod_out = m_amp - s_amp * space_gain[slice];
float amp = 0.5f * (D->m_peak - D->m_valley + (D->s_peak - D->s_valley) * space_gain[slice]);
if (amp < 0.0000001f) amp = 1; // avoid divide by zero with no signal.
// Tested and it looks good. Range of about -1 to +1 relative to amp.
// Biased one way or the other depending on the space gain.
//printf ("JWL DEBUG demod A with slicer %d: %6.2f / %6.2f = %6.2f\n", slice, demod_out, amp, demod_out/amp);
nudge_pll (chan, subchan, slice, demod_out, D, amp);
}
}
}
break;
case 'D':
case 'B': {
/* ========== Version 1.7 Experiment ========== */
// New - Convert frequency to a value proportional to frequency.
if (D->use_prefilter) {
push_sample (fsam, D->raw_cb, D->pre_filter_taps);
fsam = convolve (D->raw_cb, D->pre_filter, D->pre_filter_taps);
}
push_sample (fsam * fcos256(D->u.afsk.c_osc_phase), D->u.afsk.c_I_raw, D->lp_filter_taps);
push_sample (fsam * fsin256(D->u.afsk.c_osc_phase), D->u.afsk.c_Q_raw, D->lp_filter_taps);
D->u.afsk.c_osc_phase += D->u.afsk.c_osc_delta;
float c_I = convolve (D->u.afsk.c_I_raw, D->lp_filter, D->lp_filter_taps);
float c_Q = convolve (D->u.afsk.c_Q_raw, D->lp_filter, D->lp_filter_taps);
float phase = atan2f (c_Q, c_I);
float rate = phase - D->u.afsk.prev_phase;
if (rate > M_PI) rate -= 2 * M_PI;
else if (rate < -M_PI) rate += 2 * M_PI;
D->u.afsk.prev_phase = phase;
// Rate is radians per audio sample interval or something like that.
// Scale scale that into -1 to +1 for expected tones.
float norm_rate = rate * D->u.afsk.normalize_rpsam;
// We really don't have mark and space amplitudes available in this case.
if (D->num_slicers <= 1) {
float demod_out = norm_rate;
// Tested and it looks good. Range roughly -1 to +1.
//printf ("JWL DEBUG demod B single = %6.2f\n", demod_out);
nudge_pll (chan, subchan, 0, demod_out, D, 1.0);
}
else {
// This would be useful for HF SSB where a tuning error
// would shift the frequency. Multiple slicing points would
// then compensate for differences in transmit/receive frequencies.
//
// Where should we set the thresholds?
// I'm thinking something like:
// -.5 -.375 -.25 -.125 0 .125 .25 .375 .5
//
// Assuming a 300 Hz shift, this would put slicing thresholds up
// to +-75 Hz from the center.
for (int slice=0; slice<D->num_slicers; slice++) {
float offset = -0.5 + slice * (1. / (D->num_slicers - 1));
float demod_out = norm_rate + offset;
//printf ("JWL DEBUG demod B slice %d, offset = %6.3f, demod_out = %6.2f\n", slice, offset, demod_out);
nudge_pll (chan, subchan, slice, demod_out, D, 1.0);
}
}
}
break;
}
#if DEBUG4
if (chan == 0) {
if (D->slicer[slice].data_detect) {
char fname[30];
if (demod_log_fp == NULL) {
seq++;
snprintf (fname, sizeof(fname), "demod/%04d.csv", seq);
if (seq == 1) mkdir ("demod", 0777);
demod_log_fp = fopen (fname, "w");
text_color_set(DW_COLOR_DEBUG);
dw_printf ("Starting demodulator log file %s\n", fname);
fprintf (demod_log_fp, "Audio, Mark, Space, Demod, Data, Clock\n");
}
fprintf (demod_log_fp, "%.3f, %.3f, %.3f, %.3f, %.2f, %.2f\n", fsam + 3.5, m_norm + 2, s_norm + 2,
(m_norm - s_norm) / 2 + 1.5,
demod_data ? .9 : .55,
(D->data_clock_pll & 0x80000000) ? .1 : .45);
}
else {
if (demod_log_fp != NULL) {
fclose (demod_log_fp);
demod_log_fp = NULL;
}
}
}
#endif
} /* end demod_afsk_process_sample */
/*
* Finally, a PLL is used to sample near the centers of the data bits.
*
* D points to a demodulator for a channel/subchannel pair so we don't
* have to keep recalculating it.
*
* D->data_clock_pll is a SIGNED 32 bit variable.
* When it overflows from a large positive value to a negative value, we
* sample a data bit from the demodulated signal.
*
* Ideally, the the demodulated signal transitions should be near
* zero we we sample mid way between the transitions.
*
* Nudge the PLL by removing some small fraction from the value of
* data_clock_pll, pushing it closer to zero.
*
* This adjustment will never change the sign so it won't cause
* any erratic data bit sampling.
*
* If we adjust it too quickly, the clock will have too much jitter.
* If we adjust it too slowly, it will take too long to lock on to a new signal.
*
* Be a little more aggressive about adjusting the PLL
* phase when searching for a signal. Don't change it as much when
* locked on to a signal.
*
* I don't think the optimal value will depend on the audio sample rate
* because this happens for each transition from the demodulator.
*/
__attribute__((hot))
static void nudge_pll (int chan, int subchan, int slice, float demod_out, struct demodulator_state_s *D, float amplitude)
{
D->slicer[slice].prev_d_c_pll = D->slicer[slice].data_clock_pll;
// Perform the add as unsigned to avoid signed overflow error.
D->slicer[slice].data_clock_pll = (signed)((unsigned)(D->slicer[slice].data_clock_pll) + (unsigned)(D->pll_step_per_sample));
//text_color_set(DW_COLOR_DEBUG);
// dw_printf ("prev = %lx, new data clock pll = %lx\n" D->prev_d_c_pll, D->data_clock_pll);
if (D->slicer[slice].data_clock_pll < 0 && D->slicer[slice].prev_d_c_pll > 0) {
/* Overflow - this is where we sample. */
// Assign it a confidence level or quality, 0 to 100, based on the amplitude.
// Those very close to 0 are suspect. We'll get back to this later.
int quality = fabsf(demod_out) * 100.0f / amplitude;
if (quality > 100) quality = 100;
#if DEBUG5
// Write bit stream to a file.
static FILE *bsfp = NULL;
static int bcount = 0;
if (chan == 0 && subchan == 0 && slice == 0) {
if (bsfp == NULL) {
bsfp = fopen ("bitstream.txt", "w");
}
fprintf (bsfp, "%d", demod_out > 0);
bcount++;
if (bcount % 64 == 0) {
fprintf (bsfp, "\n");
}
}
#endif
#if 1
hdlc_rec_bit (chan, subchan, slice, demod_out > 0, 0, quality);
#else // TODO: new feature to measure data speed error.
// Maybe hdlc_rec_bit could provide indication when frame starts.
hdlc_rec_bit_new (chan, subchan, slice, demod_out > 0, 0, quality,
&(D->slicer[slice].pll_nudge_total), &(D->slicer[slice].pll_symbol_count));
D->slicer[slice].pll_symbol_count++;
#endif
pll_dcd_each_symbol2 (D, chan, subchan, slice);
}
// Transitions nudge the DPLL phase toward the incoming signal.
int demod_data = demod_out > 0;
if (demod_data != D->slicer[slice].prev_demod_data) {
pll_dcd_signal_transition2 (D, slice, D->slicer[slice].data_clock_pll);
// TODO: signed int before = (signed int)(D->slicer[slice].data_clock_pll); // Treat as signed.
if (D->slicer[slice].data_detect) {
D->slicer[slice].data_clock_pll = (int)(D->slicer[slice].data_clock_pll * D->pll_locked_inertia);
}
else {
D->slicer[slice].data_clock_pll = (int)(D->slicer[slice].data_clock_pll * D->pll_searching_inertia);
}
// TODO: D->slicer[slice].pll_nudge_total += (int64_t)((signed int)(D->slicer[slice].data_clock_pll)) - (int64_t)before;
}
/*
* Remember demodulator output so we can compare next time.
*/
D->slicer[slice].prev_demod_data = demod_data;
} /* end nudge_pll */
/* end demod_afsk.c */