-
Notifications
You must be signed in to change notification settings - Fork 313
/
Copy pathgen_tone.c
764 lines (585 loc) · 22.7 KB
/
gen_tone.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
//
// This file is part of Dire Wolf, an amateur radio packet TNC.
//
// Copyright (C) 2011, 2014, 2015, 2016, 2019, 2023 John Langner, WB2OSZ
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
/*------------------------------------------------------------------
*
* Module: gen_tone.c
*
* Purpose: Convert bits to AFSK for writing to .WAV sound file
* or a sound device.
*
*
*---------------------------------------------------------------*/
#include "direwolf.h"
#include <stdio.h>
#include <math.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include "audio.h"
#include "gen_tone.h"
#include "textcolor.h"
#include "fsk_demod_state.h" /* for MAX_FILTER_SIZE which might be overly generous for here. */
/* but safe if we use same size as for receive. */
#include "dsp.h"
// Properties of the digitized sound stream & modem.
static struct audio_s *save_audio_config_p = NULL;
/*
* 8 bit samples are unsigned bytes in range of 0 .. 255.
*
* 16 bit samples are signed short in range of -32768 .. +32767.
*/
/* Constants after initialization. */
#define TICKS_PER_CYCLE ( 256.0 * 256.0 * 256.0 * 256.0 )
static int ticks_per_sample[MAX_CHANS]; /* Same for both channels of same soundcard */
/* because they have same sample rate */
/* but less confusing to have for each channel. */
static int ticks_per_bit[MAX_CHANS];
static int f1_change_per_sample[MAX_CHANS];
static int f2_change_per_sample[MAX_CHANS];
static float samples_per_symbol[MAX_CHANS];
static short sine_table[256];
/* Accumulators. */
static unsigned int tone_phase[MAX_CHANS]; // Phase accumulator for tone generation.
// Upper bits are used as index into sine table.
#define PHASE_SHIFT_180 ( 128u << 24 )
#define PHASE_SHIFT_90 ( 64u << 24 )
#define PHASE_SHIFT_45 ( 32u << 24 )
static int bit_len_acc[MAX_CHANS]; // To accumulate fractional samples per bit.
static int lfsr[MAX_CHANS]; // Shift register for scrambler.
static int bit_count[MAX_CHANS]; // Counter incremented for each bit transmitted
// on the channel. This is only used for QPSK.
// The LSB determines if we save the bit until
// next time, or send this one with the previously saved.
// The LSB+1 position determines if we add an
// extra 180 degrees to the phase to compensate
// for having 1.5 carrier cycles per symbol time.
// For 8PSK, it has a different meaning. It is the
// number of bits in 'save_bit' so we can accumulate
// three for each symbol.
static int save_bit[MAX_CHANS];
static int prev_dat[MAX_CHANS]; // Previous data bit. Used for G3RUH style.
/*------------------------------------------------------------------
*
* Name: gen_tone_init
*
* Purpose: Initialize for AFSK tone generation which might
* be used for RTTY or amateur packet radio.
*
* Inputs: audio_config_p - Pointer to modem parameter structure, modem_s.
*
* The fields we care about are:
*
* samples_per_sec
* baud
* mark_freq
* space_freq
* samples_per_sec
*
* amp - Signal amplitude on scale of 0 .. 100.
*
* 100% uses the full 16 bit sample range of +-32k.
*
* gen_packets - True if being called from "gen_packets" utility
* rather than the "direwolf" application.
*
* Returns: 0 for success.
* -1 for failure.
*
* Description: Calculate various constants for use by the direct digital synthesis
* audio tone generation.
*
*----------------------------------------------------------------*/
static int amp16bit; /* for 9600 baud */
int gen_tone_init (struct audio_s *audio_config_p, int amp, int gen_packets)
{
int j;
int chan = 0;
#if DEBUG
text_color_set(DW_COLOR_DEBUG);
dw_printf ("gen_tone_init ( audio_config_p=%p, amp=%d, gen_packets=%d )\n",
audio_config_p, amp, gen_packets);
#endif
/*
* Save away modem parameters for later use.
*/
save_audio_config_p = audio_config_p;
amp16bit = (int)((32767 * amp) / 100);
for (chan = 0; chan < MAX_CHANS; chan++) {
if (audio_config_p->chan_medium[chan] == MEDIUM_RADIO) {
int a = ACHAN2ADEV(chan);
#if DEBUG
text_color_set(DW_COLOR_DEBUG);
dw_printf ("gen_tone_init: chan=%d, modem_type=%d, bps=%d, samples_per_sec=%d\n",
chan,
save_audio_config_p->achan[chan].modem_type,
audio_config_p->achan[chan].baud,
audio_config_p->adev[a].samples_per_sec);
#endif
tone_phase[chan] = 0;
bit_len_acc[chan] = 0;
lfsr[chan] = 0;
ticks_per_sample[chan] = (int) ((TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
// The terminology is all wrong here. Didn't matter with 1200 and 9600.
// The config speed should be bits per second rather than baud.
// ticks_per_bit should be ticks_per_symbol.
switch (save_audio_config_p->achan[chan].modem_type) {
case MODEM_QPSK:
audio_config_p->achan[chan].mark_freq = 1800;
audio_config_p->achan[chan].space_freq = audio_config_p->achan[chan].mark_freq; // Not Used.
// symbol time is 1 / (half of bps)
ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / ((double)audio_config_p->achan[chan].baud * 0.5)) + 0.5);
f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].mark_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
f2_change_per_sample[chan] = f1_change_per_sample[chan]; // Not used.
samples_per_symbol[chan] = 2. * (float)audio_config_p->adev[a].samples_per_sec / (float)audio_config_p->achan[chan].baud;
tone_phase[chan] = PHASE_SHIFT_45; // Just to mimic first attempt.
// ??? Why? We are only concerned with the difference
// from one symbol to the next.
break;
case MODEM_8PSK:
audio_config_p->achan[chan].mark_freq = 1800;
audio_config_p->achan[chan].space_freq = audio_config_p->achan[chan].mark_freq; // Not Used.
// symbol time is 1 / (third of bps)
ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / ((double)audio_config_p->achan[chan].baud / 3.)) + 0.5);
f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].mark_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
f2_change_per_sample[chan] = f1_change_per_sample[chan]; // Not used.
samples_per_symbol[chan] = 3. * (float)audio_config_p->adev[a].samples_per_sec / (float)audio_config_p->achan[chan].baud;
break;
case MODEM_BASEBAND:
case MODEM_SCRAMBLE:
case MODEM_AIS:
// Tone is half baud.
ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / (double)audio_config_p->achan[chan].baud ) + 0.5);
f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].baud * 0.5 * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
samples_per_symbol[chan] = (float)audio_config_p->adev[a].samples_per_sec / (float)audio_config_p->achan[chan].baud;
break;
case MODEM_EAS: // EAS.
// TODO: Proper fix would be to use float for baud, mark, space.
ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / 520.833333333333 ) + 0.5);
samples_per_symbol[chan] = (int)((audio_config_p->adev[a].samples_per_sec / 520.83333) + 0.5);
f1_change_per_sample[chan] = (int) ((2083.33333333333 * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
f2_change_per_sample[chan] = (int) ((1562.5000000 * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
break;
default: // AFSK
ticks_per_bit[chan] = (int) ((TICKS_PER_CYCLE / (double)audio_config_p->achan[chan].baud ) + 0.5);
samples_per_symbol[chan] = (float)audio_config_p->adev[a].samples_per_sec / (float)audio_config_p->achan[chan].baud;
f1_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].mark_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
f2_change_per_sample[chan] = (int) (((double)audio_config_p->achan[chan].space_freq * TICKS_PER_CYCLE / (double)audio_config_p->adev[a].samples_per_sec ) + 0.5);
break;
}
}
}
for (j=0; j<256; j++) {
double a;
int s;
a = ((double)(j) / 256.0) * (2 * M_PI);
s = (int) (sin(a) * 32767 * amp / 100.0);
/* 16 bit sound sample must fit in range of -32768 .. +32767. */
if (s < -32768) {
text_color_set(DW_COLOR_ERROR);
dw_printf ("gen_tone_init: Excessive amplitude is being clipped.\n");
s = -32768;
}
else if (s > 32767) {
text_color_set(DW_COLOR_ERROR);
dw_printf ("gen_tone_init: Excessive amplitude is being clipped.\n");
s = 32767;
}
sine_table[j] = s;
}
return (0);
} /* end gen_tone_init */
/*-------------------------------------------------------------------
*
* Name: tone_gen_put_bit
*
* Purpose: Generate tone of proper duration for one data bit.
*
* Inputs: chan - Audio channel, 0 = first.
*
* dat - 0 for f1, 1 for f2.
*
* -1 inserts half bit to test data
* recovery PLL.
*
* Assumption: fp is open to a file for write.
*
* Version 1.4: Attempt to implement 2400 and 4800 bps PSK modes.
*
* Version 1.6: For G3RUH, rather than generating square wave and low
* pass filtering, generate the waveform directly.
* This avoids overshoot, ringing, and adding more jitter.
* Alternating bits come out has sine wave of baud/2 Hz.
*
* Version 1.6: MFJ-2400 compatibility for V.26.
*
*--------------------------------------------------------------------*/
// Interpolate between two values.
// My original approximation simply jumped between phases, producing a discontinuity,
// and increasing bandwidth.
// According to multiple sources, we should transition more gently.
// Below see see a rough approximation of:
// * A step function, immediately going to new value.
// * Linear interpoation.
// * Raised cosine. Square root of cosine is also mentioned.
//
// new - / --
// | / /
// | / |
// | / /
// old ------- / --
// step linear raised cosine
//
// Inputs are the old (previous value), new value, and a blending control
// 0 -> take old value
// 1 -> take new value.
// inbetween some sort of weighted average.
static inline float interpol8 (float oldv, float newv, float bc)
{
// Step function.
//return (newv); // 78 on 11/7
assert (bc >= 0);
assert (bc <= 1.1);
if (bc < 0) return (oldv);
if (bc > 1) return (newv);
// Linear interpolation, just for comparison.
//return (bc * newv + (1.0f - bc) * oldv); // 39 on 11/7
float rc = 0.5f * (cosf(bc * M_PI - M_PI) + 1.0f);
float rrc = bc >= 0.5f
? 0.5f * (sqrtf(fabsf(cosf(bc * M_PI - M_PI))) + 1.0f)
: 0.5f * (-sqrtf(fabsf(cosf(bc * M_PI - M_PI))) + 1.0f);
(void)rrc;
return (rc * newv + (1.0f - bc) * oldv); // 49 on 11/7
//return (rrc * newv + (1.0f - bc) * oldv); // 55 on 11/7
}
static const int gray2phase_v26[4] = {0, 1, 3, 2};
static const int gray2phase_v27[8] = {1, 0, 2, 3, 6, 7, 5, 4};
// #define PSKIQ 1 // not ready for prime time yet.
#if PSKIQ
static int xmit_octant[MAX_CHANS]; // absolute phase in 45 degree units.
static int xmit_prev_octant[MAX_CHANS]; // from previous symbol.
// For PSK, we generate the final signal by combining fixed frequency cosine and
// sine by the following weights.
static const float ci[8] = { 1, .7071, 0, -.7071, -1, -.7071, 0, .7071 };
static const float sq[8] = { 0, .7071, 1, .7071, 0, -.7071, -1, -.7071 };
#endif
void tone_gen_put_bit (int chan, int dat)
{
int a = ACHAN2ADEV(chan); /* device for channel. */
assert (save_audio_config_p != NULL);
if (save_audio_config_p->chan_medium[chan] != MEDIUM_RADIO) {
text_color_set(DW_COLOR_ERROR);
dw_printf ("Invalid channel %d for tone generation.\n", chan);
return;
}
if (dat < 0) {
/* Hack to test receive PLL recovery. */
bit_len_acc[chan] -= ticks_per_bit[chan];
dat = 0;
}
// TODO: change to switch instead of if if if
if (save_audio_config_p->achan[chan].modem_type == MODEM_QPSK) {
int dibit;
int symbol;
dat &= 1; // Keep only LSB to be extra safe.
if ( ! (bit_count[chan] & 1)) {
save_bit[chan] = dat;
bit_count[chan]++;
return;
}
// All zero bits should give us steady 1800 Hz.
// All one bits should flip phase by 180 degrees each time.
// For V.26B, add another 45 degrees.
// This seems to work a little better.
dibit = (save_bit[chan] << 1) | dat;
symbol = gray2phase_v26[dibit]; // 0 .. 3 for QPSK.
#if PSKIQ
// One phase shift unit is 45 degrees.
// Remember what it was last time and calculate new.
// values 0 .. 7.
xmit_prev_octant[chan] = xmit_octant[chan];
xmit_octant[chan] += symbol * 2;
if (save_audio_config_p->achan[chan].v26_alternative == V26_B) {
xmit_octant[chan] += 1;
}
xmit_octant[chan] &= 0x7;
#else
tone_phase[chan] += symbol * PHASE_SHIFT_90;
if (save_audio_config_p->achan[chan].v26_alternative == V26_B) {
tone_phase[chan] += PHASE_SHIFT_45;
}
#endif
bit_count[chan]++;
}
if (save_audio_config_p->achan[chan].modem_type == MODEM_8PSK) {
int tribit;
int symbol;
dat &= 1; // Keep only LSB to be extra safe.
if (bit_count[chan] < 2) {
save_bit[chan] = (save_bit[chan] << 1) | dat;
bit_count[chan]++;
return;
}
// The bit pattern 001 should give us steady 1800 Hz.
// All one bits should flip phase by 180 degrees each time.
tribit = (save_bit[chan] << 1) | dat;
symbol = gray2phase_v27[tribit];
tone_phase[chan] += symbol * PHASE_SHIFT_45;
save_bit[chan] = 0;
bit_count[chan] = 0;
}
// Would be logical to have MODEM_BASEBAND for IL2P rather than checking here. But...
// That would mean putting in at least 3 places and testing all rather than just one.
if (save_audio_config_p->achan[chan].modem_type == MODEM_SCRAMBLE &&
save_audio_config_p->achan[chan].layer2_xmit != LAYER2_IL2P) {
int x;
x = (dat ^ (lfsr[chan] >> 16) ^ (lfsr[chan] >> 11)) & 1;
lfsr[chan] = (lfsr[chan] << 1) | (x & 1);
dat = x;
}
#if PSKIQ
int blend = 1;
#endif
do { /* until enough audio samples for this symbol. */
int sam;
switch (save_audio_config_p->achan[chan].modem_type) {
case MODEM_AFSK:
#if DEBUG2
text_color_set(DW_COLOR_DEBUG);
dw_printf ("tone_gen_put_bit %d AFSK\n", __LINE__);
#endif
// v1.7 reversed.
// Previously a data '1' selected the second (usually higher) tone.
// It never really mattered before because we were using NRZI.
// With the addition of IL2P, we need to be more careful.
// A data '1' should be the mark tone.
tone_phase[chan] += dat ? f1_change_per_sample[chan] : f2_change_per_sample[chan];
sam = sine_table[(tone_phase[chan] >> 24) & 0xff];
gen_tone_put_sample (chan, a, sam);
break;
case MODEM_EAS:
tone_phase[chan] += dat ? f1_change_per_sample[chan] : f2_change_per_sample[chan];
sam = sine_table[(tone_phase[chan] >> 24) & 0xff];
gen_tone_put_sample (chan, a, sam);
break;
case MODEM_QPSK:
#if DEBUG2
text_color_set(DW_COLOR_DEBUG);
dw_printf ("tone_gen_put_bit %d PSK\n", __LINE__);
#endif
tone_phase[chan] += f1_change_per_sample[chan];
#if PSKIQ
#if 1 // blend JWL
// remove loop invariant
float old_i = ci[xmit_prev_octant[chan]];
float old_q = sq[xmit_prev_octant[chan]];
float new_i = ci[xmit_octant[chan]];
float new_q = sq[xmit_octant[chan]];
float b = blend / samples_per_symbol[chan]; // roughly 0 to 1
blend++;
// b = (b - 0.5) * 20 + 0.5;
// if (b < 0) b = 0;
// if (b > 1) b = 1;
// b = b > 0.5;
//b = 1; // 78 decoded with this.
// only 39 without.
//float blended_i = new_i * b + old_i * (1.0f - b);
//float blended_q = new_q * b + old_q * (1.0f - b);
float blended_i = interpol8 (old_i, new_i, b);
float blended_q = interpol8 (old_q, new_q, b);
sam = blended_i * sine_table[((tone_phase[chan] - PHASE_SHIFT_90) >> 24) & 0xff] +
blended_q * sine_table[(tone_phase[chan] >> 24) & 0xff];
#else // jump
sam = ci[xmit_octant[chan]] * sine_table[((tone_phase[chan] - PHASE_SHIFT_90) >> 24) & 0xff] +
sq[xmit_octant[chan]] * sine_table[(tone_phase[chan] >> 24) & 0xff];
#endif
#else
sam = sine_table[(tone_phase[chan] >> 24) & 0xff];
#endif
gen_tone_put_sample (chan, a, sam);
break;
case MODEM_8PSK:
#if DEBUG2
text_color_set(DW_COLOR_DEBUG);
dw_printf ("tone_gen_put_bit %d PSK\n", __LINE__);
#endif
tone_phase[chan] += f1_change_per_sample[chan];
sam = sine_table[(tone_phase[chan] >> 24) & 0xff];
gen_tone_put_sample (chan, a, sam);
break;
case MODEM_BASEBAND:
case MODEM_SCRAMBLE:
case MODEM_AIS:
if (dat != prev_dat[chan]) {
tone_phase[chan] += f1_change_per_sample[chan];
}
else {
if (tone_phase[chan] & 0x80000000)
tone_phase[chan] = 0xc0000000; // 270 degrees.
else
tone_phase[chan] = 0x40000000; // 90 degrees.
}
sam = sine_table[(tone_phase[chan] >> 24) & 0xff];
gen_tone_put_sample (chan, a, sam);
break;
default:
text_color_set(DW_COLOR_ERROR);
dw_printf ("INTERNAL ERROR: %s %d achan[%d].modem_type = %d\n",
__FILE__, __LINE__, chan, save_audio_config_p->achan[chan].modem_type);
exit (EXIT_FAILURE);
}
/* Enough for the bit time? */
bit_len_acc[chan] += ticks_per_sample[chan];
} while (bit_len_acc[chan] < ticks_per_bit[chan]);
bit_len_acc[chan] -= ticks_per_bit[chan];
prev_dat[chan] = dat; // Only needed for G3RUH baseband/scrambled.
} /* end tone_gen_put_bit */
void gen_tone_put_sample (int chan, int a, int sam) {
/* Ship out an audio sample. */
/* 16 bit is signed, little endian, range -32768 .. +32767 */
/* 8 bit is unsigned, range 0 .. 255 */
assert (save_audio_config_p != NULL);
assert (save_audio_config_p->adev[a].num_channels == 1 || save_audio_config_p->adev[a].num_channels == 2);
assert (save_audio_config_p->adev[a].bits_per_sample == 16 || save_audio_config_p->adev[a].bits_per_sample == 8);
// Bad news if we are clipping and distorting the signal.
// We are using the full range.
// Too late to change now because everyone would need to recalibrate their
// transmit audio level.
if (sam < -32767) {
text_color_set(DW_COLOR_ERROR);
dw_printf ("Warning: Audio sample %d clipped to -32767.\n", sam);
sam = -32767;
}
else if (sam > 32767) {
text_color_set(DW_COLOR_ERROR);
dw_printf ("Warning: Audio sample %d clipped to +32767.\n", sam);
sam = 32767;
}
if (save_audio_config_p->adev[a].num_channels == 1) {
/* Mono */
if (save_audio_config_p->adev[a].bits_per_sample == 8) {
audio_put (a, ((sam+32768) >> 8) & 0xff);
}
else {
audio_put (a, sam & 0xff);
audio_put (a, (sam >> 8) & 0xff);
}
}
else {
if (chan == ADEVFIRSTCHAN(a)) {
/* Stereo, left channel. */
if (save_audio_config_p->adev[a].bits_per_sample == 8) {
audio_put (a, ((sam+32768) >> 8) & 0xff);
audio_put (a, 0);
}
else {
audio_put (a, sam & 0xff);
audio_put (a, (sam >> 8) & 0xff);
audio_put (a, 0);
audio_put (a, 0);
}
}
else {
/* Stereo, right channel. */
if (save_audio_config_p->adev[a].bits_per_sample == 8) {
audio_put (a, 0);
audio_put (a, ((sam+32768) >> 8) & 0xff);
}
else {
audio_put (a, 0);
audio_put (a, 0);
audio_put (a, sam & 0xff);
audio_put (a, (sam >> 8) & 0xff);
}
}
}
}
void gen_tone_put_quiet_ms (int chan, int time_ms) {
int a = ACHAN2ADEV(chan); /* device for channel. */
int sam = 0;
int nsamples = (int) ((time_ms * (float)save_audio_config_p->adev[a].samples_per_sec / 1000.) + 0.5);
for (int j=0; j<nsamples; j++) {
gen_tone_put_sample (chan, a, sam);
};
// Avoid abrupt change when it starts up again.
tone_phase[chan] = 0;
}
/*-------------------------------------------------------------------
*
* Name: main
*
* Purpose: Quick test program for above.
*
* Description: Compile like this for unit test:
*
* gcc -Wall -DMAIN -o gen_tone_test gen_tone.c audio.c textcolor.c
*
* gcc -Wall -DMAIN -o gen_tone_test.exe gen_tone.c audio_win.c textcolor.c -lwinmm
*
*--------------------------------------------------------------------*/
#if MAIN
int main ()
{
int n;
int chan1 = 0;
int chan2 = 1;
int r;
struct audio_s my_audio_config;
/* to sound card */
/* one channel. 2 times: one second of each tone. */
memset (&my_audio_config, 0, sizeof(my_audio_config));
strlcpy (my_audio_config.adev[0].adevice_in, DEFAULT_ADEVICE, sizeof(my_audio_config.adev[0].adevice_in));
strlcpy (my_audio_config.adev[0].adevice_out, DEFAULT_ADEVICE, sizeof(my_audio_config.adev[0].adevice_out));
audio_open (&my_audio_config);
gen_tone_init (&my_audio_config, 100);
for (r=0; r<2; r++) {
for (n=0; n<my_audio_config.baud[0] * 2 ; n++) {
tone_gen_put_bit ( chan1, 1 );
}
for (n=0; n<my_audio_config.baud[0] * 2 ; n++) {
tone_gen_put_bit ( chan1, 0 );
}
}
audio_close();
/* Now try stereo. */
memset (&my_audio_config, 0, sizeof(my_audio_config));
strlcpy (my_audio_config.adev[0].adevice_in, DEFAULT_ADEVICE, sizeof(my_audio_config.adev[0].adevice_in));
strlcpy (my_audio_config.adev[0].adevice_out, DEFAULT_ADEVICE, , sizeof(my_audio_config.adev[0].adevice_out));
my_audio_config.adev[0].num_channels = 2;
audio_open (&my_audio_config);
gen_tone_init (&my_audio_config, 100);
for (r=0; r<4; r++) {
for (n=0; n<my_audio_config.baud[0] * 2 ; n++) {
tone_gen_put_bit ( chan1, 1 );
}
for (n=0; n<my_audio_config.baud[0] * 2 ; n++) {
tone_gen_put_bit ( chan1, 0 );
}
for (n=0; n<my_audio_config.baud[0] * 2 ; n++) {
tone_gen_put_bit ( chan2, 1 );
}
for (n=0; n<my_audio_config.baud[0] * 2 ; n++) {
tone_gen_put_bit ( chan2, 0 );
}
}
audio_close();
return(0);
}
#endif
/* end gen_tone.c */